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Abstract

An e}ective Lewis number is calculated for situations where temperature and mass fraction gradients are very large
by de_ning e}ective thermal and mass di}usivities^ such situations may occur in systems where there is more than one
chemical component\ and in particular under supercritical conditions[ The de_nitions evolve from a model assuming
that derivatives of certain functions are small with respect to those of the dependent variables[ In the model\ Soret and
Dufour e}ects are included and ShvabÐZeldovich!like variables are de_ned to remove the coupling between the operators
of the di}erential equations for temperature and mass fractions[ Results from calculations using binary systems of
chemical components\ using both isolated ~uid drops and interacting ~uid drops\ show that under supercritical
conditions\ depending upon the compounds\ the e}ective Lewis number can be 1Ð39 times larger than the traditionally
calculated Lewis number and that the spatial variation of the two numbers is di}erent[ For the values of the thermal
di}usion factor used in the calculations\ the Soret and Dufour e}ects are negligible^ the discrepancy between the
traditional and e}ective Lewis numbers is due to the combined e}ect of the small mass di}usion factor and the di}erence
between the speci_c enthalpies of the two compounds[ Parametric variations show that the e}ective Lewis number
increases with increasing pressure and decreasing surrounding gas temperature[ Closer drop proximity in clusters results
in sharper peaks in the e}ective Lewis number due to the increased gradients of the dependent variables[ Þ 0887 Elsevier
Science Ltd[ All rights reserved[

Nomenclature

Cp molar heat capacity at constant pressure
D di}usion coe.cient
Fems emission ~ux
h molar enthalpy
J molar ~ux
L elements of the transport matrix
Le Lewis number
m molar mass
Ma Mach number
n number of moles per unit volume
N number of species
NuC Nusselt number
p pressure
q heat ~ux
r generic coordinate
Rd ~uid entity radius

� Corresponding author[ Tel[] 990 707 243 5848^ fax] 990 707
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Ru universal gas constant
t time
T temperature
u velocity
v molar volume
X mole fraction
Y mass fraction[

Greek symbols
aD mass di}usion factors
aT thermal di}usion factor
av thermal expansion ratio
b 0:"Ru:T#
g activity coe.cient
Dr grid size
h viscosity
l thermal conductivity
m chemical potential
r density
t stress tensor
Fv viscous dissipation[
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Subscripts
b ~uid entity interface\ at r � Rd

c critical point property
C cluster
d ~uid drop
e external
e} e}ective
i\ j species
m mass
si at the edge of the sphere of in~uence
T thermal[

Superscripts
i\ j species
9 initial value
¦"−# on the pure LOx"H1# side of r � Rd[

0[ Introduction

The Lewis number is a measure of the importance of
heat di}usion to the mass di}usion\ Le 0 DT:Dm where
traditionally DT � l:"nCp#^ therefore Le provides an indi!
cation of what process controls a phenomenon being
studied[ For example\ in gases usually Le � O"0# which
means that heat and mass di}usion proceed at similar
rates[ Departures from unity Le in gases have been dis!
cussed by Law et al[ ð0Ł\ Haworth and Poinsot ð1Ł\ Lee et
al[ ð2Ł\ Joulin ð3Ł\ Echekki and Freziger ð4Ł and others
in the context of curved ~ames^ and by Greenberg and
Ronney ð5Ł in the context of ~ame spread over thin and
thick solid fuels[ In contrast to gases\ in liquids
Le � O"09#ÐO"099# indicating that heat di}usion is fas!
ter than mass di}usion[

All existing studies of Le e}ects in gases have discussed
departures from the preferred unity assumption "because
it enables an easier mathematical treatment#\ but none
has questioned the validity of the Le calculation accord!
ing to the above relationships for portraying the relative
importance of heat and mass di}usion[ This is because
the calculation of the Lewis number for gases and liquids
is straightforward when the molar ~ux depends only upon
the mole fraction gradients and the heat ~ux depends
only upon the temperature gradient[ However\ this is not
the most general situation\ and is certainly not applicable
to a general ~uid[ The present study is devoted to the
investigation of departures from the traditional cal!
culation of Le^ we address here the case of general ~uids[
Because liquids and gases at atmospheric conditions
become ~uids at supercritical conditions\ this study is in
particular relevant to multicomponent systems at very
high pressures and temperatures characteristic of super!
critical conditions[ We are particularly interested in the
behavior of compounds under supercritical conditions
because of the relevance to liquid rocket propulsion\ gas
turbine engines and diesel engines[

FluctuationÐdissipation theory provides the most gen!
eral framework for de_ning the heat and mass di}usion
coe.cients[ The viewpoint of ~uctuation theory is inter!
mediate to that of continuum and molecular!level
approaches and allows the modeling of transport pro!
cesses totally consistent with nonequilibrium ther!
modynamics "which continuum theory does not address#^
at the same time it avoids the di.culties "and some of the
potential bene_ts\ which are irrelevant here# of molecular
dynamics[ For example] continuum theory does not give
relationships between ~uxes and forces for a general ~uid^
it is customary within the continuum formulation to
extend kinetic theory of rari_ed gases to describe more
general cases "as in ð6Ł#[ Within the formalism of Keizer|s
~uctuationÐdissipation theory ð7\ 8Ł\ the mass di}usivity
and thermal di}usivity appear in elements of a transport
matrix that relates the gradients of the chemical poten!
tials and of the temperature to the molar and heat ~uxes
as follows]

Ji � Liq9b− s
N

j�0

Lij9"bmj#\ q � Lqq9b− s
N

j�0

Lqj9"bmj#

"0[0#

where Lij are the Fick|s di}usion elements\ Lqq is the
Fourier thermal di}usion element\ Liq are the Soret
di}usion and Lqj are the Dufour di}usion elements[ The
Onsager relations state that Lij � Lji and Liq � Lqi[ From
conservation of total and species mass in the system one
obtains the additional relations SN

i miJi � 9 and
SN

i Lijmi � 9 for j $ ð0\ NŁ and j � q[
Using the thermodynamic relationship

d"bmj# � b"vj dp−hj d lnT#¦0 s
N−0

i�0

aD ji
dXi1>Xj "0[1#

where

aDi j
0 bXi 1mi:1Xj � 1Xi:1Xj¦Xi 1 ln gi:1Xj "0[2#

one can calculate Ji from "0[0# and "0[1#[ Equations "0[0#Ð
"0[2# show another bene_t of ~uctuation theory in that
the relationship between ~uxes and thermodynamics is
obvious^ basically\ the theory consistently extends gradi!
ent transport to far from equilibrium situations[ Within
this framework\ the expressions for the chemical poten!
tials can be derived for a general ~uid and used in equa!
tion "0[1#\ which allows the consideration of both
possibly non!unity di}usion factors and transport e}ects
of the enthalpy and molar volumes with temperature
gradients and pressure gradients\ respectively[

This formalism shows that the classical calculation of
Le can no longer indicate the relative importance of heat
and mass di}usion because of the additional con!
tributions that appear as non!diagonal terms[ Thus\ there
is a need to identify what is the equivalent of DT and Dm

under general conditions\ and investigate characteristic
values of their ratio\ called here Lee}[
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In this paper we present a formalism for a calculation
of Lee} and show that under supercritical conditions the
existence of the nondiagonal terms in the transport equa!
tions enhances the heat di}usion and decreases the mass
di}usion\ resulting in Lee} larger than Le by a factor
that varies from approximately 1Ð39 depending on the
compounds and on the particular conditions of the cal!
culation[ Additionally\ we show that Lee} is a non!
monotonic function of Le\ and thus that the variation
of Le cannot be considered to represent even a relative
qualitative estimate of the importance of heat and mass
di}usion[ In Section 1 we develop the expression for Lee}

for a binary component ~uid in a general one!dimen!
sional geometry^ the analysis can be easily extended to a
multicomponent ~uid in multidimensions[ In Section 2
we calculate Lee} for both isolated and collections of
spherical entities " ~uid drops# of LOx in ~uid H1 at high
pressures and investigate the importance of the thermal
di}usion factor upon the results[ Results are also pre!
sented for isolated C6H05 ~uid drops in ~uid N1 to identify
the impact of the compounds identity upon the results[
Finally\ Section 3 is devoted to conclusions[

1[ Model

In a single coordinate con_guration\ the species and
energy equations for a binary component ~uid can be
written as follows]

r
1Y0

1t
¦ru

1Y0

1r
� m09 = J\ r

1Y1

1t
¦ru

1Y1

1r
� −m09 = J

"1[0#

nCp 0
1T
1t

¦u
1T
1r1� avT 0

1p
1t

¦u
1p
1r1−9 = q¦Fv

−m0"h0:m0−h1:m1#9 = J "1[1#

where av � ð"1v:1T#p\X0
Ł:v\ J � −J0r �"m1:m0#J1r[ As

shown by equation "0[0#\ the general forms of J and
q � −qr are

J � AJ

1Y0

1r
¦BJ

1T
1r

¦CJ

1p?
1r

q � Aq

1T
1r

¦Cq

1Y0

1r
¦Bq

1p?
1r

[ "1[2#

Expressions of the gradients multiplicative coe.cients in
equation "1[2# appear in the Appendix[

The terms proportional to the gradients of the dynamic
pressure in the expressions for J and q will be neglected
in the following because those gradients are proportional
to Ma1 and Ma ð 0\ while coe.cients CJ and Bq are no
larger than other coe.cients in the equations^ spatial
variations of p? were con_rmed to be small by results
from calculations of isolated entities of LOx in ~uid H1

at high pressures ð09Ł[ The viscous dissipation term has

been neglected as well because it is expected to be much
smaller than the other terms in equation "1[1#[

If the set G �"Y0\ T# is considered a vector primitive
variable\ the di}erential operator LG � r 1G:1t¦ru 1G:
1r−"0:rs# 1"rsD 1G:1r#:1r\ where s � 9 for planar
geometry and s � 1 for spherical geometry\ represents
the set of conservation equations LG � 9\ where D is
a generic di}usion coe.cient matrix[ When Fick|s and
Fourier|s laws accurately describe molar and heat ~uxes\
respectively\ the operators for the two variables Y0 and
T are uncoupled because the di}usion term in the equa!
tion for each variable contains only derivatives of that
variable^ D is diagonal[ In that situation\ one de_nes the
traditional Le as the ratio of the di}usive length scales of
the temperature and mass fractions^ the ratio is calculated
using the coe.cients of the di}usive terms[ In the more
general situation where the ~ux matrix is given by equa!
tion "1[2# instead of the Fick and Fourier laws\ the di}er!
ential operators for the two variables are no longer
uncoupled because in each equation the di}usion term
contains derivatives of both variables[ The di}erential
operators are now coupled\ and this coupling prohibits a
simple de_nition of appropriate di}usion length scales
for heat and mass transfer[

Similar to the classical situation where Le relates the
di}usive length scales of the mass fractions and tem!
perature given by the coe.cients of the di}usive terms
when the di}erential operators of the species and tem!
perature equations are uncoupled\ and thus the di}usion
term in the di}erential operator is given by multiplying a
diagonal matrix with the spatial derivative\ one must _nd
here equivalent variables for which the matrix of the
system of equations "1[0# and "1[1# has a diagonal form[
Given the complexity of equations "1[0#Ð"1[2#\ a simple\
accurate combination of variables cannot be found a
priori[ Tambour and Gal!Or ð00Ł have performed such
a diagonalization for compressible\ laminar boundary
layers and stagnation ~ows with blowing or suction^ the
same method was used by Greenberg et al[ ð01Ł in laminar
jets and by Greenberg ð02Ł for planar premixed gaseous
~ames[ Similar to the previous work ð00Ð02Ł\ the strategy
is here to _nd a solution that will be valid under certain
assumptions[

The _rst assumption is that of a boundary layer spatial
variation at a location that would be a surface under
subcritical conditions\ r � Rd\ in which case the medium
for r ³ Rd is a liquid "component 0# and the medium for
r × Rd is a gas "component 1#[ The analysis will then be
valid for =Rd−r= ð Rd[ In subcritical conditions\ the
liquid evaporates "except for the particular case of satu!
ration# and thus ru � Fems^ under supercritical conditions
for component 0\ one may still de_ne the ~ux in the same
manner although its meaning is not necessarily that of
evaporation "depending on the surface mixture critical
point#[ The second assumption is that of quasi!steady
behavior^ although under supercritical conditions a
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quasi!steady behavior is not necessarily attained "because
the value of the density ratio r"R¦

d #:r"R−
d # does not

remain ð0 during the calculation#\ this assumption is
appropriate for _nding order of magnitude scales rather
than an entirely accurate solution for the variables[ It is
the form of the steady\ convectionÐdi}usion equation
solution that provides the intuition about the assump!
tions to be further made in the model[ This form is an
exponential dependence on a spatial integral multiplied
by a more weakly varying function ð04Ł[

The point of departure for _nding an approximate
solution are ShvabÐZeldovich!like variables ð6Ł that are
combinations of Y0 and T[ In the ShvabÐZeldovich for!
malism for transient combustion in a di}usiveÐconvective
system\ linear combinations of variables are used in con!
junction with a series of assumptions to eliminate the
reaction term from all but one equation and render the
conservation equations easier to solve[ In the present
context\ the combined variables

VY 0 Y0−vTT and VT 0 T−vYY0 "1[3#

are de_ned to diagonalize the operators of the di}erential
equations^ the quantities vT and vY are calculated below
by satisfying the conservation equations[ Once equations
"1[3# are replaced into the original equations "1[0#Ð"1[2#\
VY and VT can be shown to be approximately governed
by the following equations for appropriately chosen vT

and vY

r
1VY

1t
¦Fems

1VY

1r
�

0

rs

1

1r 0rsrDeff

1VY

1r 1 "1[4#

r
1VT

1t
¦Fems

1VT

1r
�

0

rs

1

1r $rs"mleff:Cp#
1VT

1r %[ "1[5#

Equations "1[4# and "1[5# are obtained under the assump!
tion that spatial and temporal derivatives of functions vT

and vY are smaller than those of VY and VT and can thus
be neglected[ This assumption is satis_ed if equations
"1[4# and "1[5# are quasi!steady and if the multipliers of
the exponential functions which are the characteristic
solutions of the di}usionÐconvection equation have a
smaller variation than the exponential functions[ Quasi!
steadiness of equations "1[4# and "1[5# is satis_ed if
"Fems#1 Ł r1De} 1:1t and "Fems#1 Ł"mrle}:Cp# 1:1t[ Small
variation of the multipliers with respect to the exponen!
tial functions occurs if FemsDr × rDe} and FemsDr ×
mle}:Cp\ where Dr is the grid size[

The e}ective transport coe.cients in equations "1[4#
and "1[5# are calculated from the original equations as
follows]

rDeff � m0AJ−vTmC?q:Cp "1[6#

leff � A?q−vY"m0:m#CpBJ "1[7#

where

A?q 0 Aq−m0"h0:m0−h1:m1#BJ

and "1[8#

C?q 0 Cq−m0"h0:m0−h1:m1#AJ

with

vT � sm0CpBJ:m and vY � −sC?q "1[09#

where s is the positive root of the second!order algebraic
equation

"m0:m#CpBJC?qs
1¦ðA?q−"m0:m#CpAJŁs−0 � 9 "1[00#

the other root being unphysical as it leads to singular
behavior[ These equations allow the calculation of De}\
le} and Lee} 0 le}:"nCpDe}# once the values of the depen!
dent variables are known[

Although the above analysis is strictly valid only within
a boundary layer\ it is also conceptually correct in any
region where there are large variations of the dependent
variables[ Thus\ the above expressions show the correct
transport scales for any region of steep gradients[ As
such\ the ratio of the e}ective transport coe.cients will
be calculated below and compared to that of the con!
ventional transport coe.cients for speci_c situations
involving large dependent variable gradients[

To illustrate the model\ calculations are performed for
spherical ~uid drops\ either isolated or in clusters where
they may collectively interact[ The general model for
isolated ~uid drops is described in ð09Ł and is based upon
the ~uctuationÐdissipation theory discussed above whose
main results are equations "1[0#Ð"1[2#[ Additional to the
conservation equations "1[0# and "1[1#\ the model of Har!
stad and Bellan ð09Ł also solves a mass conservation equa!
tion[ The boundary conditions at the evolving interface
initially between pure LOx and mainly H1 ~uid\ and in
the far _eld are also described in detail in ð09Ł[ The cal!
culation of the equations of state is described elsewhere
ð06Ł and the models for the transport coe.cients is dis!
cussed in Harstad and Bellan ð09Ł[ For cluster studies\
there are additional mass\ species and energy con!
servation equations relating the behavior of all entities in
the cluster ð03Ł\ the boundary conditions between the
cluster and its surrounds[

2[ Results

To illustrate the di}erence between the traditional Le
and Lee} we present calculations obtained from the solu!
tion of isolated ~uid drops and clusters of ~uid drops of
LOx in H1 at supercritical conditions[ In order to evaluate
the importance of the Soret and Dufour terms\ we also
present results from isolated ~uid drop calculations with
null aT as well as with one non null value smaller than the
baseline choice of aT � 9[94 ð05Ł[ Finally\ to investigate
possible departures from the conclusions based on results
from the LOxÐH1 system\ we also present results for iso!
lated C6H05 ~uid drops in ~uid N1^ obviously\ a myriad
of binary systems can be investigated and by its nature
the present study cannot be exhaustive[
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2[0[ Isolated ~uid drops] the LOxÐH1 system

2[0[0[ Baseline behavior
Figure 0 illustrates the radial variation of Le and Lee}

at di}erent times for an isolated ~uid drop having
R9

d � 49×09−3 cm and T9
d\b � 099 K "the ~uid drop

temperature is assumed initially uniform#\ in far _eld
surroundings characterized by T9

si � 0999 K\ p � 79 MPa
and Y9

si � 9[ The ~uid drop is initially composed of pure
LOx "Tc � 043[5 K\ pc � 4[932 MPa#\ while the sur!
rounding is hydrogen "Tc � 22[1 K\ pc � 0[202 MPa#^ in

Fig[ 0[ Spatial variation of the traditional "a# and the e}ective
"b# Lewis numbers\ and the variation of Lee} with Le "c# at
various times for R9

d � 49×09−3 cm\ R9
si � 9[0 cm\ T9

d\b � 099
K\ T9

si � 0999 K\ Y9
si � 9\ and p � 79 MPa[ The curves cor!

respond to the following times] 9[9 s "*#\ 5×09−2 s "! ! !#\
0[9×09−1 s "! = ! = !#\ 0[3×09−1 s "= = =#\ 1[9×09−1 s "Ð Ð#\
1[20×09−1 s "! = = !#[

order to avoid an initial unphysical discontinuity\ a small
amount of oxygen exists initially in the drop surround!
ings\ its distribution vanishing with increasing r[ The far
_eld conditions Te � 0999 K and Y0e � 9 are at a distance
"R9

si−R9
d# from the drop interface\ where R9

si � 9[0 cm[
The spatial variation of Lee} is essentially di}erent

from that of Le in that it is nonmonotonic even after the
memory of the initial condition is lost ðthe t � 9 curves
do not appear in any of the Lee} plots\ throughout this
study\ because the value of Lee} "r � R9

d# is o} scaleŁ[
This is because Lee} implicitly accounts for Y0 and T
gradient e}ects^ these Y0 and T gradients do not occur at
the same location under supercritical conditions[ Thus\
the spatial variation of Lee} is directly related to the
variation of Y0 and T gradients as follows] for small r\
the shallow part of the curves corresponds mostly to
the large 1T:1r\ Y0 being mostly uniform\ the temporal
increase of Lee} is due to the increased T[ The strongly
increasing branch of Lee} corresponds to the region of
large 1Y0:1r and the location of the maximum Lee} is
directly related to the maximum Y0 gradient[ Finally\ the
decreasing part of the Lee} curves corresponds to the
decreasing 1Y0:1r and the asymptotic leveling of T[ In
contrast\ the Le spatial variation re~ects only the depen!
dence of DT and Dm upon composition and T[ An elim!
ination of the spatial variation between Le and Lee}

results in the plots presented in Fig[ 0"c#] Lee} vs Le
at di}erent times[ Examination of the curves in Fig[ 0
indicates that the additional coupling terms result in an
enhancement of the thermal di}usivity with respect to
the mass di}usivity[ More precisely\ tedious manipu!
lations of equations "1[6#Ð"1[00# and "A[0#Ð"A[5# in the
Appendix show that in fact the thermal di}usivity is
e}ectively increased whereas the mass di}usivity is e}ec!
tively decreased[ For the conditions used to obtain the
results depicted in Fig[ 0\ the ratio Lee}:Le is approxi!
mately 19 in the inner part of the interface\ whereas on
the outer side of the interface it reaches a maximum of
59 and a minimum of three[

The fact that Le is a multivalued function of Lee} "see
Fig[ 0"c## is a warning that Le cannot be even considered
a qualitative estimate of the true relative importance of
heat to mass di}usion at di}erent spatial locations[ More!
over\ whereas the values of Lee} indicate that heat
di}usion exceeds mass di}usion at all locations\ Le indi!
cates erroneously that mass di}usion dominates heat
di}usion at all times for r ¾ R9

d [ The almost!complete
coincidence of all curves in Fig[ 0"c# indicates that for a
given geometry and initial conditions\ at each spatial
position there is an almost!unique relationship between
the ratio of the transport coe.cients and the ratio of the
e}ective transport coe.cients "but not vice versa#[ Since
both the transport coe.cients and the e}ective transport
coe.cients depend upon Y0 and T "whose variation is
governed by the conservation equations# this coincidence
is not obvious and its meaning is not immediately appar!
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ent[ Further results presented below for the C6H05ÐN1

system indicate that this self!similarity is not a property
of the conservation equations and is instead related to
the system of compounds[

2[0[1[ Parametric variation
Plots of Le and Lee} at t � 1×09−1 s for same initial

conditions as the baseline calculations except for p\
appear in Fig[ 1[ Increasing p decreases both Dm and DT

Fig[ 1[ Spatial variation at 1×09−1 s of the traditional "a# and
the e}ective "b# Lewis numbers and the variation of the e}ective
Lewis number with the traditional Lewis number "c# for several
pressures] 09 MPa "! ! !#\ 19 MPa "! = ! = !#\ 14 MPa "= = =#\ 39 MPa
"Ð Ð#\ 79 MPa "! = = !#[ Other initial conditions are those in Fig[ 0
caption[

"see Fig[ 2#\ however\ DT 0 l:"nCp# is a stronger function
of p[ The spatial variation of all transport properties
results from the di}erent p in the far _eld\ and from the
combined e}ect of the di}erent p upon the composition\
r and T in the near _eld of the initial drop boundary ð09Ł[
In the inner region of mild gradients\ both Le and Lee}

show similar variations\ however\ the absolute values
di}er by a factor of approximately 19[ In the far _eld
region "which similarly to the inner region has small
gradients#\ both Le and Lee} show an asymptotic
behavior\ their values di}ering by a factor of approxi!
mately three[ The large di}erence of variation "approxi!
mately a factor of 49# occurs in the region of strong
gradients in accord with the boundary layer analysis[ The
narrowing of the width between the increasing and the
decreasing branches of Lee} indicates the reduction in
scales with increasing p[ The variation of Lee} with Le
depicted in Fig[ 1 indicates that in the low and high Le
regime there is an almost unique relationship to Lee}

independent of p\ whereas the in~uence of p is mainly felt
in the intermediate Le regime which occurs in the region
of large gradients[

Far _eld temperature e}ects upon the variation of Le
and Lee} are illustrated in Fig[ 3 at t � 1×09−1 s for two

Fig[ 2[ Spatial variation of the mass "a# and thermal "b# di}us!
ivities at 1×09−1 s for the conditions listed in the caption of Fig[
1^ the curves are also labelled identically[
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Fig[ 3[ Spatial variation at 1×09−1 s of the traditional "a# and
the e}ective "b# Lewis numbers\ and variation of the e}ective
Lewis number with the traditional Lewis number "c# at 1×09−1

s[ Plots are for two temperatures and three pressures^ the other
conditions are those listed in Fig[ 0 caption[ Curves are labelled
as follows] T9

si � 0999 K "*#\ "! ! !# and "! = ! = !#^ and T9
si � 499

K "= = =#\ "Ð Ð# and "! = = !#[ Corresponding pressures are] 19 MPa
"*# and "= = =#^ 39 MPa "! ! !# and "Ð Ð#^ and 79 MPa "! = ! = !# and
"! = = !#[

temperatures at three values of p[ In the lower p range\
the T and Y0 gradients occur at increasing distance with
increasing temperature\ whereas in the higher p regime
the distance between the largest gradients of T and Y0

becomes less sensitive to temperature[ Unlike the vari!
ation of Lee} with Le as a function of p\ the relationship
between Le and Lee} is sensitive to T9

si over the entire
range of Le[

The variation of Le and Lee} with the initial ~uid drop
size is depicted in Fig[ 4 and shows the increase in scales
with increasing initial size[

To investigate the importance of Soret and Dufour
e}ects on the above results\ calculations were performed
with aT � 9 and 9[90 to compare with the baseline cal!
culations where aT � 9[94[ The results from the three sets
of calculations were virtually indistinguishable indicating
that for the range of aT explored\ the Soret and Dufour
terms are negligible[ This result is in apparent con!
tradiction with the di}erence in magnitude and variation
of Le and Lee}[ However\ careful examination of equa!
tions "1[2# and "A[1# in the Appendix shows that the
contribution to the molar ~ux from the temperature
gradient contains two terms] the _rst is the di}erence in
the ratios of the molar enthalpies divided by the molar
masses\ and the second is the Soret term[ Spatial plots of
the molar enthalpy "not presented# show that the LOx

molar enthalpy is smaller than that of H1[ Since addition!
ally the molar mass of oxygen is one order of magnitude
larger than that of hydrogen\ this renders the _rst term
in equation "A[1# in the Appendix very large compared
to the Soret term[ Moreover\ in equation "1[2# the multi!

Fig[ 4[ Spatial variation at 1×09−1 s of the traditional "a# and
the e}ective "b# Lewis numbers at 14 MPa for initial ~uid drop
radii 14×09−3 cm "! = ! = !#\ 49×09−3 cm "*# and 299×09−3 cm
"= = =#[ The other conditions are those of Fig[ 0[
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plicative coe.cient of the mass fraction gradient\ AJ\
contains the factor aD which is unity for a two component
system under subcritical conditions ðsee equation "0[2#Ł
but is ð0 under the present conditions^ the small value
of aD also contributes to the large value of Lee} ðsee
equation "1[6#Ł[ Such di}usion departures from the usual\
subcritical behavior were discussed by Cussler ð07Ł who
points out that di}usion coe.cients may approach a null
value near and above the critical condition[

The present conclusions depend on the uncertain value
range for aT^ to our knowledge\ there is no data providing
aT for the LOxÐH1 system as a function of T\ p and Y0[

2[1[ Clusters of ~uid drops] the LOxÐH1 system

To investigate the e}ect of ~uid drops proximity on
the relative importance of both conventional and e}ective
heat and mass di}usion\ calculations were performed
with spherical clusters of these drops[ The details model
for the ~uid drops interactions is described elsewhere
ð03Ł^ the only results discussed here are those pertinent to
Le and Lee}[

Due to the essentially di}usive behavior at supercritical
conditions\ interactions among ~uid drops are not
expected unless these are in close proximity[ The prox!
imity of the ~uid drops is measured by a {sphere of in~u!
ence| around each drop that is centered at the drop center
and has a radius\ Rsi\ which is half of the distance between
adjacent drops[ Transfer from the cluster surroundings
to the cluster is modeled using the Nusselt number con!
cept ð03Ł[ As an example\ in the baseline calculations
with R9

d � 49×09−3 cm\ R9
si � 1R9

d \ R9
C � 1 cm\

T9
d\b � 099 K "T9

d is uniform inside the drop#\
T9

si � Te � 0999 K\ pe � 79 MPa and Y0e � 9\ the num!
ber of drops in the cluster is 4[81×095[

Results illustrating the di}erence in variation for both
Le and Lee} with increasing R9

si:R
9
d for two di}erent

pressures are depicted in Fig[ 5[ Decreasing R9
si:R

9
d results

in an increase in Le and the e}ect is more pronounced at
larger pressures\ however the maximum value attained is
always at the edge of the sphere of in~uence and remains
constant with pressure and drop packing[ In contrast\
Lee} attains its maximum inside the sphere of in~uence\
at the location of maximum Y0 gradients ð03Ł as already
explained above[ Additionally\ while the maximum Lee}

value remains constant with drop packing\ it increases
substantially with pressure in agreement with the known
larger augmentation of heat di}usion with respect to
mass di}usion as the pressure increases[ Examination of
Fig[ 5"b# shows that a factor of four increase in pressure
induces approximately a 14) increase in the maximum
value of Lee}[

Since gradients at the edge of the cluster boundary are
in~uenced by NuC\ the value of NuC was varied from 091

"baseline# to 094 in increments of factors of 09[ The plots
appearing in Fig[ 6 show the relative insensitivity of the

Fig[ 5[ Spatial variation at 09−1 s of the traditional "a# and the
e}ective "b# Lewis numbers for clusters of drops having
R9

d � 49×09−3 cm\ NuC � 091\ R9
C � 1 cm\ T9

d\b � 099 K\
T9

si � Te � 0999 K and Y9
si � Ye � 9[ Curves are labelled as

follows] R9
si:R

9
d �09 "*# and "! ! !#^ 4 "Ð Ð# and "! = = !#^ 1 "! = ! = !#

and "= = =#[ Two pressures are considered] 19 MPa "*#\ "Ð Ð# and
"! = ! = !#^ and 79 MPa "! ! !#\ "! = = !# and "= = =#[

results to NuC] it is only the size of the cluster that slightly
increases "due to increased heat transfer\ see ð03Ł# when
NuC changes by three orders of magnitude\ but the
maximum value of either Le or Lee} is not a}ected[ How!
ever\ the increase in NuC corresponds to a reduction in T
at a given location as the volume of the sphere of in~uence
is increased^ this a}ects the transport properties and
induces a reduction in Le[ In contrast\ no such monotonic
behavior is observed for Lee} due to the combined e}ect
of the transport properties variation and the reduction in
the gradients at larger NuC[

2[2[ Isolated ~uid drops] the C6H05ÐN1 system

The validity of the above conclusions for other systems
has been investigated by performing calculations for an
application relevant to gas turbine engines and diesel
engines] the C6H05ÐN1 system[ Examination of the molar
enthalpies of the two compounds shows that of n!heptane
to be smaller than that of nitrogen^ since the molar mass
of n!heptane is larger than that of nitrogen\ Soret and
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Fig[ 6[ Spatial variation at 09−1 s of the traditional "a# and the
e}ective "b# Lewis numbers for NuC � 091 "*#\ 092 "! ! !#\ 093

"! = ! = !#\ and 094 "= = =#[ The other conditions are those of Fig[ 5[

Dufour e}ects are again expected to be negligible[ To
ascertain this expectation\ calculations were performed
with aT � 9[9\ 9[90 and 9[94 and it was found that the
results were indeed virtually indistinguishable[

Figure 7 illustrates results from calculations for iso!
lated heptane drops in nitrogen for the following con!
ditions] R9

d � 49×09−3 cm\ R9
si � 9[92 cm\ T9

d\b � 399 K
"T9

d is uniform inside the drop#\ T9
si � Te � 0999 K\

pe � 19 MPa and Y0e � 9[ The ratio of Lee} to Le is only
approximately two for the maximum value independent
of location\ and approximately three locally[ Similar to
the LOxÐH1 system\ the variations of Lee} and Le with r
are di}erent indicating again that Le is not a good quali!
tative measure of relative heat to mass transfer[ Plots of
Lee} vs Le "not illustrated# paralleling those of Fig[ 0"c#
do not show the self!similar variation which seems to be
a peculiarity of the LOxÐH1 system[

3[ Summary and conclusions

A model has been developed to calculate an e}ective
Lewis number for situations where large gradients of
species and temperature exist in a system[ The model is

Fig[ 7[ Spatial variation of the traditional "a# and the e}ective
"b# Lewis numbers for the n!heptaneÐnitrogen system for several
times] 9[9 s "*#\ 09−1 s "! ! !#\ 1×09−1 s "! = ! = !# 1[14×09−1 s
"= = =#\ 1[4×09−1 s "Ð Ð# 2[2×09−1 s "! = = !#[ Other initial conditions
are] R9

d � 49×09−3 cm\ R9
si � 9[92 cm\ T9

d\b � 399 K\
T9

si � Te � 0999 K\ Y0e � 9 and p � 19 MPa[

based upon the assumption that derivatives of certain
functions are small with respect to those of the dependent
variables[ ShvabÐZeldovich!like variables are de_ned to
eliminate the coupling of the operators of the di}erential
equations for species and energy[ Based upon the new
equations for the ShvabÐZeldovich!like variables\ an
e}ective di}usivity and thermal conductivity are de_ned
and further calculated incorporating Soret and Dufour
e}ects[ The model is applied to binary component sys!
tems at supercritical conditions[

Results obtained for the isolated LOx ~uid drop in H1

show that the e}ective Lewis number can be larger than
the Lewis number by a factor of 39[ Additionally\ the
traditional Lewis number and e}ective Lewis number
have di}erent spatial variations indicating that the tra!
ditional Lewis number is not even a qualitative measure
of the relative importance of heat and mass transfer[
Calculations performed by varying the value of the ther!
mal di}usion factor indicate that it is not the Soret and
Dufour terms that are responsible for the di}erence
between the traditional and e}ective Lewis numbers[
Instead\ it is found that it is the combined e}ect of the
small mass di}usion factor and transport e}ects of the
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enthalpy with temperature gradients that are responsible
for the enhancement in heat di}usion over mass di}usion[
Similar calculations performed for ~uid n!heptane drops
in nitrogen showed the same trends in that the Soret
and Dufour terms were unimportant within the range of
values used for the thermal di}usion factors[ For the n!
heptaneÐnitrogen system\ the e}ective Lewis number was
only a factor of 1Ð2 larger than the traditional Lewis
number[ The uncertainty in the value and variation of
the thermal di}usion factor with temperature\ pressure
and species molar fraction does not allow a de_nitive
conclusion as to the importance of Soret and Dufour
terms[

Parametric studies show that the e}ective Lewis num!
ber increases with increasing pressure and decreasing
temperature\ and that closer drop proximity results in
sharper peaks in the e}ective Lewis number due to the
increased gradients of the dependent variables[

Since the Lewis number is both a theoretically im!
portant quantity and a quantity used in simpli_ed esti!
mates by design engineers\ the present _ndings have both
a fundamental and a practical value[
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Appendix

The expressions for the elements of the ~ux matrix are
as follows]

AJ �"m:m0#nDmaD "A[0#

BJ �"m1:m#nDm""m0m1X0X1:m#"h1:m1

−h0:m0#:"RuT
1#¦X0X1aT:T# "A[1#

CJ �"m1:m#nDm"m0m1X0X1:m#"v0:m0−v1:m1#:"RuT#

"A[2#

Aq � l¦"aTRuT#nDm"m0m1X0X1:m#"h1:m1

−h0:m0#:"RuT
1# "A[3#

Cq � ðm1:"m0m1#ŁnDmaDaTRuT "A[4#

Bq � nDmaT"m0m1X0X1:m#"v0:m0−v1:m1#[ "A[5#

According to the GibbsÐDuhem relationship
aD � aD0 � aD1\ where aDi

� 0¦Xi"1 ln gi:1Xi#T\p[
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